

NV series

Induction VAV air volume control terminals

Table of contents

Description	Page
Type designation	1
Technical data	
- General	2
- Specification	3
- Installation instruction	3
Model overview / dimensions	4 - 5
Sound data NVOA	6 - 7
Sound data NVOC	8 - 9
Sound data NVOG	10 -11
Sound data NVOJ	12 -13

Type designation NV.....

0500

Heater capacity

160R

Model

Composition type designation:

N-V-O-N-F-O-B-A

Ordering example:

NVONFOBA

See above

N Position 1: Product group

N = air volume control terminals

V Position 2: Function

O = not applicable V = VAV Induction terminal

W = VAV Induction terminal with controlled induction

1 = non standard, specify separately

O Position 3: Controls (manufacturer)

O = without controls For controls, contact our sales staff

N Position 4: Outlet

O = not applicable

A = rectangular outlet

C = 4 circular outlets ('Octopus')

G = rectangular outlet and provision for integral hot water reheat coil

J = 4 circular outlets and provision for integral hot water reheat coil

N = rectangular outlet and provision for integral electric reheat coil

Q = 4 circular outlets and provision for integral electric reheat coil

1 = non standard, specify separately

Position 5: Reheat coil

O= without reheat coil

A = 1-row hot water reheat

B = 2-row hot water reheat

D = 4-row hot water reheat

E = 1-stage 230VAC/1-phase electric reheat coil

F = 2-stage 230VAC/1-phase electric reheat coil

G = 3-stage 230VAC/1-phase electric reheat coil

H = 1-stage 400VAC/3-phase electric reheat coil

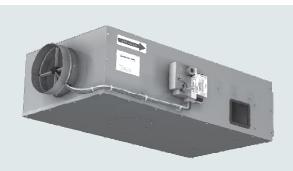
J = 2-stage 400VAC/3-phase electric reheat coil

1 = non standard, specify separately

Position 6: Controls (type & function)

O = without controls
For controls, contact our sales staff

B Positon 7: Sensor


O=not applicable B=Factory installed Flow Sensor

1 = non standard, specify separately

Positon 8: **Design Series**

Technical data Type (NV....)

N**V**OA

Application

The NV rectangular pressureindependent VAV air volume control terminals are designed particularly for systems with high variations in heat load. The terminals induce room air and mix it with conditioned primary air, maintaining a nearly constant air volume to the room thus providing sufficient air movement necessary to maintain occupant comfort even in extreme load variations. This specific characteristic means that cold air 'dumping' will not occur and that extremely low primary air temperatures can be used, without producing excessive differences between the supply and the room air temperature. The Induction VAV terminals can be used for supply air applications in new or refurbishment projects. The terminals can optionally be supplied with a distribution plenum and a built-in hot water or electric reheat coil.

Features:

- Pressure independent control functions.
- Volume control range 100% to 10% without requirement for special VAV diffusers or assisting fans.
- Suitable for low temperature primary air systems.
- Optional air distribution plenum.
- Optional factory fitted hot water or electric reheat coils.
- Large size induction damper with leakage seals.
- Low noise generation.
- Suitable for VAV, CAV or shutoff operation.

- Accurate airflow sensing with 2 x 12 points averaging and better than 2.5% accuracy.
- Maintenance free.

Technical information

Casina

Air-tight construction made of galvanized sheet steel with low casing leakage rate.

Insulation:

Internally lined with thermal and acoustic insulation with optional double skin construction.

Damper:

Damper blade made of heavy gauge galvanised steel with felt or optional neoprene gaskets.

Air Sensor:

Extruded aluminium construction with nylon connectors.

Distribution plenum:

Made of galvanised sheet steel with internal insulation. Plenum with standard rectangular or multiple (4 x circular) outlet construction.
Optional 1,2,3 or 6 circular outlets are possible.

Outlet spigots are made of galvanised steel and optionally can be provided with volume control dampers.

Reheat coil:

Choice of 1, 2 or 4-row hot water reheat coil or electric reheat coil (220-240VAC/1-phase or 380-415VAC/3-phase).

Controls:

Suitable for use with pneumatic, analogue electronic or DDC controllers. Controls can be factory fitted, wired and calibrated. A controls enclosure made from galvanised sheet steel can be provided as an option.


Delivery format:

Delivery format:

- The VAV or CAV terminal will be supplied as a single mounting assembly.
 Optional ordered distribution plenum, reheat coil and/or controls are factory fitted, wired and calibrated. The terminal can be directly installed and commissioned when delivered to site.
- Controls location and hot water or electric connections are as standard fitted on the right hand side of the terminal when looking in the direction of the airflow.
 On request, the terminal can be delivered with connections on the left hand side.
- When terminals are ordered with controls, these will be factory fitted, wired and calibrated upon request.

Technical data Type (NV....)

N**V**OJ

Specify as:

Example:

Supply and install, induction variable air volume terminals with distribution plenum with 4 circular outlets, constructed from galvanized sheet steel. The VAV terminals shall have a special low leakage damper blade and an aluminium damper shaft with self lubricating nylon bearings.

A centre averaging airflow sensor with at least 2 x 12 test points shall control the airflow with an accuracy not less than 2.5%.

The terminals shall be supplied with 1 row hot water reheat coil.

The controller shall be I/A Series, DDC controller: LonMark compatible, type MNL-V2RVx

or

BACnet compatible, type MNB-V2.

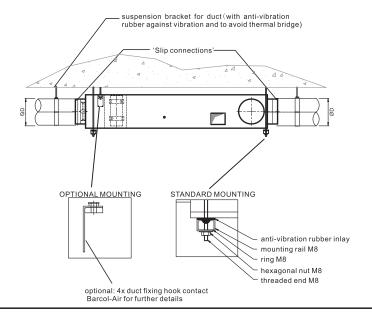
Controls shall be factory fitted, wired and calibrated according to the following requirements:

Miximum air volume 250 l/s Minimum air volume 60 l/s Minimum air volume 120 l/s (in case of reheat)

Ordering example: type - model - handing= NVOJAOBA - 200R

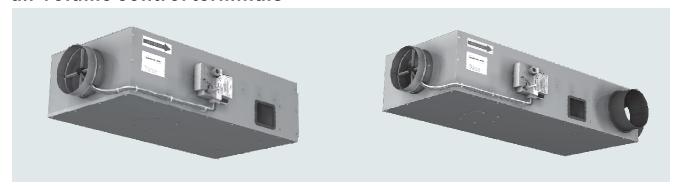
Manufacturer: Barcol-Air

Installation Instructions:

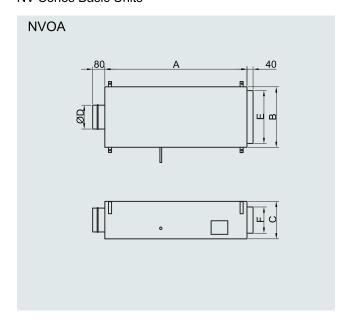

The VAV terminals shall be installed using at least two support brackets, with antivibration rubber under the terminal. Each of these brackets shall be fixed with two threaded rods to the ceiling slab above.

The installation method:

- Shall prevent the body of the VAV terminal from mechanical tension, which could damage the construction and performance of the terminal.
- Shall prevent torsion on the induction VAV terminals, which could cause malfunction of the damper blades.
- Provides some flexibility to the final location of the VAV terminals.
- Use at least one diameter straight duct length before the VAV inlet.


- Additional manual volume control dampers (VCD's) should not be used before the unit inlet.
- 6. All connections shall be thermally isolated.
- Pressure sensing tubes connected to the airflow sensor shall not be "kinked" or otherwise obstructed by the external duct insulation.

See drawing below.





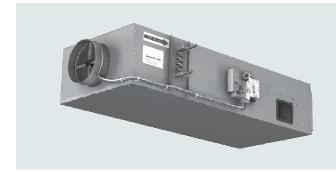
Model overview *Type (NV....)*

NV Series Basic Units

Dimensions NV

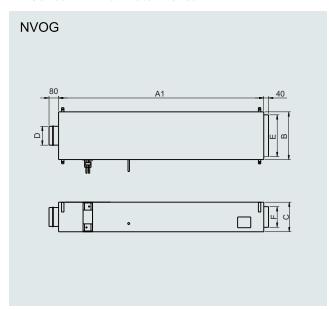
Model	100	125	160	200	250	315	355	400
Α	940	940	940	940	940	1490	1490	1490
A1	1190	1190	1190	1190	1190	1740	1740	1740
A2	1720	1720	1720	1720	1720	2100	2100	2100
А3	600/900	600/900	600/900	600/900	800/900	-	-	-
В	330	330	400	500	600	740	820	910
С	228	228	248	268	318	408	408	458
ΦD	98	123	158	198	248	313	353	398
ФD1	148	148	148	198	248	-	-	-
E	275	275	350	450	550	690	770	850
F	170	170	175	200	250	330	330	380

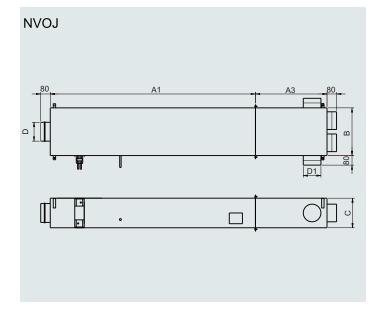
All dimensions in mm.

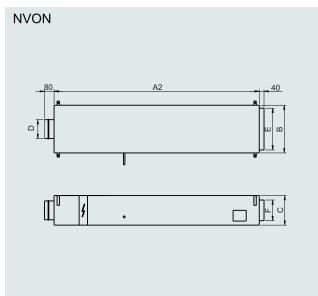

* = Installed length.

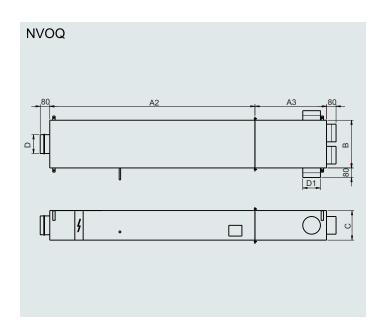
** = Size varies with a 1-2-row or 4-row hot water reheat coil.

Other dimensions are available upon request. Size 250 is maximum size for terminals with multiple outlet section. Bigger size are available per job request. MOA can be integrated with basic unit per job requirement




Model overview Type (NV.....)




NV Series With Hot Water Reheat

NV Series With Electric Reheat

For dimensions see page 4

Type (NVOA)

Sound data $\Delta p = 150 Pa$

_			fering t spigot					disch														
_	>	IIIIet	spigot								l						radia	ated s	ound			
_	>				L _w	in d	B/O	t. (re	e 1p\	V)	Lp	valu	es	L"	in d	B/O	ct. (r	e 1p\	N)	Lp	valu	es
Model	velocity	ai	ir volun		125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	dB(A)	NC	A N	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	dB(A)	NC	NR
	m/s	l/s_	CFM	m³/h			dE	3								d	В					
	2	15	31	53	-	25	21	-	-	-				25	26	-	-	-	-			
100	4	29	62	106	25	33	29	24	23	-				30	31	22	20	-	-			
100	6	44	94	160	31	37	34	29	27	18				34	35	26	24	20	-			
	8	59	125	213	35	41	37	32	30	21				37	38	30	28	24	-			
	10	74	156	266	38	43	40	35	32	23				39	40	33	31	27	19			
	2 4	23	49	84	21	29	24	20	19	17				27	28	18	-	10	-			
125		47	99	168	31	37	32	28	26 30	17 21				33	34	25 29	22	18	-			
120	6 8	70 94	149	253 337	37	41	37	33	33	24				37	38 41	33	26 30	22 26	10			
	10	94 117	198 248	421	41 44	45 47	40 43	36 39	35	26				40	43	36	33	29	18 21	21		
	2	39	82	139	29	33	28	24	22	-				31	27	21	-	-	-			
	4	78	164	279	38	41	36	32	29	21				36	32	28	24	20				
160	6	116	246	418	43	46	41	37	33	25				40	36	32	29	24	17			
	8	155	328	558	47	49	44	40	36	28	22			43	39	36	32	28	20			
	10	194	410	697	50	52	47	43	39	30	25		21	45	41	39	35	31	23	22		
	2	61	129	219	33	36	29	25	23	-				40	35	27	19	-	-			
200	4	122	258	439	42	44	37	33	31	21				45	40	34	26	22	_	20		
200	6	183	387	658	46	49	41	38	35	25	21			49	44	38	31	26	19	24		
	8	244	516	878	50	52	45	41	38	28	25		22	52	47	42	34	30	22	27		22
	10	305	645	1097	53	55	47	44	4	30	27	22	24	54	49	45	37	33	25	30	21	24
	2	96	203	345	38	39	31	27	25	-				42	37	30	21	18	-			
250	4	192	406	690	45	47	39	35	32	21				48	43	37	28	24	-	23		
	6	288	609	1035	50	52	44	40	36	25	24		21	52	47	41	32	28	21	27		21
	8	383	812	1380	53	55	47	43	39	28	28	22	25	55	50	45	36	32	24	30	22	24
	10	479	1015	1725	55	58	50	46	41	31	30	25	28	57	52	48	39	35	27	33	25	27
	2	153	324	550	43	43	34	29	26	-				45	40	33	23	20	-	20		
315	4	306	648	1101	49	51	42	37	33	22	23			51	46	40	30	26	19	26		20
	6	459	971	1651	53	55	46	42	37	26	28	22	25	55	50	44	35	30	23	30	22	24
	8	612	1295	2202	56	59	50	45	40	29	31	26	29	58	53	48	38	34	26	33	25	27
	10	764	1619	2752	58	61	52	48	42	31	33	29	31	60	55	51	41	37	29	35	29	30
	4	195	412	701	46	44	35 43	30 38	27 34	22	25		22	47	42 48	35 41	31	21 27	20	22 28		22
355	6	389 584	824 1236	1401 2102	51 55	52 57	43	43	38	26	30	25	27	53 56	51	41	36	31	20 24	31	24	26
	8	779	1649	2803	57	60	51	43	41	29	33	28	31	59	54	49	39	35	27	34	27	29
	10	973	2061	3503	59	63	54	49	43	31	35	31	33	62	57	52	42	38	30	37	31	32
	2	248	524	891	49	46	37	31	28	-	21			48	43	36	25	22	-	23		
400	4		1049	1783	54	54	45	39	35	22	27	21	24	54	49	43	32	28	21	29	21	24
400	6		1573	2674	57	59	49	44	39	27	32	27	29	58	53	47	37	32	25	33	26	28
	8		2097	3565	59	62	53	47	42	29	35	31	33	61	56	51	40	36	28	36	29	31
	10	1238		4456	60	65	55	49	44	32	37	34	36	63	58	54	43	39	31	38	32	33

- 1. Sound data is determined in a reverberation
- room at an independent sound laboratory, according to ISO3741 and ISO 5135 standards.

 2. Lw in dB/Oct. (re 1pW) are sound power levels for discharge sound and case radiated sound. Figures less than 17 dB are indicated by "-
- 3. The discharge sound pressure levels are determined with the assumptions as mentioned in table 1 for downstream ductwork including a diffuser with insulated plenum box.
- 4. The radiated sound pressure levels are determined with the assumptions as mentioned in table 1 for ceiling plenum and suspended ceiling absorption. 5. Lp values are including a room absorption of 10 dB/Oct.
- 6. DB(A), NC and NR index figures are sound pressure levels. Figures less than 20 are indicated
- λys is static pressure drop across VAV air volume control terminal with damper fully open.
 For non standard applications and/or selections,
- please contact our technical staff.
- 9. For non standard applications and/or selections, please contact our technical staff.

Table 1: Assumptions for additional attenuation

Hz	125	250	500	1K	2K	4K
Discharge (dB)	5	10	20	30	30	25
Radiated (dB)	2	5	10	15	15	20

Model	125	250	500	1K	2K	4K	Hz
100	7	11	16	22	23	22	dB
125	5	10	14	21	22	20	dB
160	4	7	11	15	16	15	dB
200	4	6	9	13	14	13	dB
250	3	6	8	12	13	12	dB
315	3	5	8	11	12	12	dB
355	3	4	7	10	11	12	dB
400	3	4	6	10	11	12	dВ

Type (NVOA)

Sound data $\Delta p = 250 \, \text{Pa}$

	.a.a L	3p - 2	250 P	a	Δp = 250 Pa																	
		data re	efering	to				dicat	0100				$2\mathbf{p} = 2$	30 P	а			- 4 - d -	aa!			
			spigot		L	in d			arge s e 1pV			valu	es	ı	in c	IB/O		ateds e 1p\		l r	valu	es
					w	a		. (1	100	• /	-	, vaiu			, c	, 5					, valu	-
Model	velocity	а	ir volun	ne	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	dB (A)	NC	NR	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	dB(A)	NC	NR
	m/s	l/s	CFM	m³/h			dE										В					
	2	15	31	53	18	28	25	20	20	-				28	29	20	18	-	-			
100	4	29	62	106	28	36	33	28	27	20				34	35	26	24	20	-			
100	6	44	94	160	33	41	38	33	32	24				37	38	31	29	24	-			
	8	59	125	213	38	44	41	36	35	27				40	41	34	32	27	20			
	10	74	156	266	41	46	44	39	37	29				42	43	36	35	30	23	22		
	2	23	49	84	24	32	29	24	24	-				31	32	23	20	-	-			
125	4	47	99	168	34	40	37	32	31	23				37	38	29	26	22	-			
125	6	70	149	253	39	44	41	37	35	27				40	41	33	31	26	19			
	8	94	198	337	43	48	45	40	38	30	20			43	44	37	34	29	22	22		
	10	117	248	421	46	50	47	43	40	32	23			45	46	39	37	32	25	24		21
	2	39	82	139	32	36	32	28	27	20				34	30	26	22	18	-			
160	4	78	164	279	41	44	40	36	34	27				40	36	33	29	25	17			
100	6	116	246	418	46	49	45	41	38	31	22			43	39	37	33	29	21	20		
	8	155	328	558	50	52	48	44	41	34	25		22	46	42	40	36	32	24	23		
	10	194	410	697	52	55	51	47	453	36	28	22	25	48	44	43	39	34	27	25		
	2	61	129	219	36	39	33	30	28	20 27				43	38	32	24	20	-			
200	4 6	122	258	439 658	44 49	47	41	38	35 39	31	25			49	44	38	31	26 30	19	24		
	8	183	387			52	46	42	42	34	25		22 25	52	50	46	35	34	23	28	22	22
	10	244	516	878 1097	53 55	55 50	49	46	44	36	28	23	28	55	52	48		36	26	30	25	25 27
	2	305 96	203	345	41	58 42	51 35	48 31	29	20	31	26		57 46	41	35	26	22	29	33 21		
	4	192	406	690	48	50	43	39	36	27	23			52	47	41	33	28	21	27		21
250	6	288	609	1035	52	55	48	44	41	31	28	22	25	55	50	45	37	32	25	31	23	25
	8	383	812	1380	56	58	51	47	43	34	31	26	28	58	53	49	40	36	28	33	26	28
	10	479	1015	1725	58	61	54	50	46	37	33	29	31	60	55	51	43	38	31	36	29	30
	2	153	324	550	46	46	38	33	31	21				49	44	38	28	24	-	24		
245	4	306	648	1101	52	54	46	41	38	28	27	21	23	55	50	44	35	30	23	30	22	24
315	6	459	971	1651	53	58	51	46	42	32	31	26	28	58	53	48	39	34	27	33	26	28
	8	612	1295	2202	58	62	54	49	45	35	34	30	32	61	56	52	42	38	30	36	30	31
	10	764	1619	2752	61	64	56	52	47	37	37	33	35	63	58	54	45	40	33	39	32	33
	2	195	412	701	48	48	39	34	31	21	21			51	46	39	29	25	18	26		20
355	4	389	824	1401	54	56	47	42	38	28	28	23	25	56	51	46	36	32	24	31	24	26
333	6	584	1236	2102	58	60	52	47	43	32	33	28	31	60	55	50	40	36	28	35	28	30
	8	779	1649	2803	60	64	55	50	45	35	36	32	34	62	57	53	43	39	31	38	31	33
	10	973	2061	3503	62	66	58	53	48	37	38	35	37	65	60	56	46	41	34	40	34	35
	2	248	524	891	51	50	41	35	32	21	24			52	47	41	30	26	19	27		22
400	4	495	1049	1783	56	58	49	43	39	28	30	25	28	58	53	47	37	33	25	33	26	28
	6	743	1573	2674	59	62	54	48	43	32	35	31	33	61	56	51	41	37	29	37	30	31
	8	990	2097	3565	61	66	57	51	46	35	38	35	36	64	59	55	44	40	32	39	33	34
	10	1238	2621	4456	63	68	60	54	48	38	40	38	39	66	61	57	47	42	35	42	36	37

- 1. Sound data is determined in a reverberation
- room at an independent sound laboratory, according to ISO3741 and ISO 5135 standards.

 2. Lw in dB/Oct.(re 1pW) are sound power levels for discharge sound and case radiated sound. Figures less than 17 dB are indicated by "-
- 3. The discharge sound pressure levels are determined with the assumptions as mentioned in table 1 for downstream ductwork including a diffuser with insulated plenum box.
- 4. The radiated sound pressure levels are determined with the assumptions as mentioned in table 1 for ceiling plenum and suspended ceiling absorption. 5. Lp values are including a room absorption of 10 dB/Oct.
- 6. DB(A), NC and NR index figures are sound pressure levels. Figures less than 20 are indicated by "- -".
- 7. Δps is static pressure drop across VAV air volume control terminal with damper fully open.
- 8. For non standard applications and/or selections, please contatct our technical staff.

9. For non standard applications and/or selections, please contact our technical staff.

Table 1: Assumptions for additional attenuation

Hz	125	250	500	1K	2K	4K
Discharge (dB)	5	10	20	30	30	25
Radiated (dB)	2	5	10	15	15	20

Model	125	250	500	1K	2K	4K	Hz
100	7	11	16	22	23	22	dB
125	5	10	14	21	22	20	dB
160	4	7	11	15	16	15	dB
200	4	6	9	13	14	13	dB
250	3	6	8	12	13	12	dB
315	3	5	8	11	12	12	dB
355	3	4	7	10	11	12	dB
400	3	4	6	10	11	12	dB

Type (NVOC)

Sound data $\Delta p = 150 Pa$

							∆p = 1	50 P	а													
			fering t spigot	0				discha										ted s				
		met	opigot .		L _w	in d	B/O	ct. (r	e 1p\	N)	Lp	valu	es	L,	, in c	IB/O	ct. (r	e 1p	W)	Lp	value	s
Model	velocity	ai	r volum		125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	dB (A)	NC	N R	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	dB(A)	NC	N R
	m/s	l/s	CFM	m³/h			dE	3								d	В					
	2	15	31	53	-	18	-	-	-	-				25	26	-	-	-	-			
100	4	29	62	106	19	26	21	-	-	-				30	31	22	20	-	-			
	6	44	94	160	25	30	26	19	-	-				34	35	26	24	20	-			
	8	59	125	213	29	34	29	22	18	-				37	38	30	28	24	-			
	10	74	156	266 84	32	36	32	25	20	-				39	40 28	33 18	31	27	19			
	4	23 47	49 99	168	- 25	22 30	- 24	- 18	_	_				27 33	34	25	22	18	_			
125	6	70	149	253	31	34	29	23	- 18	_				37	38	29	26	22	-			
	8	94	198	337	35	38	32	26	21	_				40	41	33	30	26	18			
	10	117	248	421	38	40	35	29	23	_				42	43	36	33	29	21	21		
	2	39	82	139	23	26	20	-	-	-				31	27	21	-	-	-			
	4	78	164	279	32	34	28	22	17	-				36	32	28	24	20	_			
160	6	116	246	418	37	39	33	27	21	-				40	36	32	29	4	17			
	8	155	328	558	41	42	36	30	24	-				43	39	36	32	28	20			
	10	194	410	697	44	45	39	33	27	18				45	41	39	35	31	23	22		
	2	61	129	219	27	29	21	-	-	-				40	35	27	19	-	-			
200	4	122	258	439	36	37	29	23	19	-				45	40	34	26	22	-	20		
200	6	183	387	658	40	42	33	28	23	-				49	44	38	31	26	19	24		
	8	244	516	878	44	45	37	31	26	-				52	47	42	34	30	22	27		21
	10	305	645	1097	47	48	39	34	28	18	21			54	49	45	37	33	25	30	21	24
	2	96	203	345	32	32	23	17	-	-				42	37	30	21	18	-			
250	4	192	406	690	39	40	31	25	20	-				48	43	37	28	24	-	23		
	6	288	609	1035	44	45	36	30	24	-				52	47	41	32	28	21	27		21
	8	383	812	1380	47	48	39	33	27	10	21		20	55	50 52	45	36	32	24	30	22 25	24
	10	479 153	1015 324	1725 550	49 37	51	42 26	36	29 -	19	23		20	57 45	40	33	39 23	35 20	27	33 20	25	27
	4	306	648	1101	43	36 44	34	19 27	21	_				51	46	40	30	26	- 19	26		20
315	6	459	971	1651	43	44	38	32	25	_	21			55	50	44	35	30	23	30	22	24
	8	612	1295	2202	50	52	42	35	28	_	24		21	58	53	48	38	34	26	33	25	27
	10	764	1619	2752	52	54	44	38	30	19	27	21	24	60	55	51	41	37	29	35	29	30
	2	195	412	701	40	37	27	20	-	-				47	42	25	24	21	-	22		
255	4	389	824	1401	45	45	35	28	22	_				53	48	41	31	27	20	28		22
355	6	584	1236	2102	49	50	40	33	26	-	23			56	51	46	36	31	24	31	24	26
	8	779	1649	2803	51	53	43	36	29	17	26	20	23	59	54	49	39	35	27	34	27	29
	10	973	2061	3503	53	56	46	39	31	19	28	23	26	62	57	52	42	38	30	37	31	32
	2	248	524	891	43	39	29	21	-	-				48	43	36	25	22	-	23		
400	4	495	1049	1783	48	47	37	29	23	-	21			54	49	43	32	28	21	29	21	24
	6	743	1573	2674	51	52	41	34	27	-	25		22	58	53	47	37	32	25	33	26	28
	8		2097	3565	53	55	45	37	30	17	28	23	25	61	56	51	40	36	28	36	29	31
	10	1238	2621	4456	54	58	47	39	32	20	30	26	28	63	58	54	43	39	31	38	32	33

- 1. Sound data is determined in a reverberation
- room at an independent sound laboratory, according to ISO3741 and ISO 5135 standards.

 2. Lw in dB/Oct.(re 1pW) are sound power levels for discharge sound and case radiated sound. Figures less than 17 dB are indicated by "-
- 3. The discharge sound pressure levels are determined with the assumptions as mentioned in $table\ 1\ for\ downstream\ ductwork\ including\ a$ diffuser with insulated plenum box.
- 4. The radiated sound pressure levels are determined with the assumptions as mentioned in table 1 for ceiling plenum and suspended ceiling absorption. 5. Lp values are including a room absorption of 10 dB/Oct.
- 6. DB(A), NC and NR index figures are sound pressure levels. Figures less than 20 are indicated by "- -"
- Δys is static pressure drop across VAV air volume control terminal with damper fully open.
 For non standard applications and/or selections,
- please contatct our technical staff.
- 9. For non standard applications and/or selections, please contact our technical staff.

Table 1: Assumptions for additional attenuation

Hz	125	250	500	1K	2K	4K
Discharge (dB)	5	10	20	30	30	25
Radiated (dB)	2	5	10	15	15	20

Model	125	250	500	1K	2K	4K	Hz
100	13	18	24	32	35	34	dB
125	11	17	22	31	34	32	dB
160	10	14	19	25	28	27	dB
200	10	13	17	23	26	25	dB
250	9	13	16	22	25	24	dB
315	9	12	16	21	24	24	dB
355	9	12	16	21	24	24	dB
400	8	11	13	19	22	23	dB

Type (NVOC)

Sound data $\Delta p = 250 Pa$

		•	250 F										∆p = 2	250 P	а							
			fering spigot					disch										ted s		T		
		miet	spigot		L _w	in d	B/O	ct. (r	e 1p\	N)	Lp	valu	es	L,	, in c	IB/O	ct. (r	e 1p\	W)	Lp	valu	es
Model	velocity	ai	ir volun	ne	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	dB(A)	NC	N R	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	dB (A)	NC	NR
	m/s	l/s	CFM	m³/h			dl	3								d	В					
100	2 4 6 8 10	15 29 44 59 74	31 62 94 125 156	53 106 160 213 266	- 22 27 32 35	21 29 34 37 39	17 25 30 33 36	- 18 23 26 29	- 20 23 25					28 34 37 40 42	29 35 38 41 43	20 26 31 34 36	-18 24 29 32 35	20 24 27 30	- - - 20 23	 22		
	2	23	49	84	18	25	21		-	_				31	32	23	20	-	-			
125	4 6 8	47 70 94 117	99 149 198 248	168 253 337 421	28 33 37 40	33 37 41 43	29 33 37 39	22 27 30 33	19 23 26 28	- - 18 20				37 40 43 45	38 41 44 46	29 33 37 39	26 31 34 37	22 26 29 32	- 19 22 25	 22 24	 	 21
	2	39	82	139	26	29	24	18	-	-				34	30	26	22	18	-			
160	4 6 8 10	78 116 155 194	164 246 328 410	279 418 558 697	35 40 44 46	37 42 45 48	32 37 40 43	26 31 34 37	22 26 28 31	- 19 22 24	 21			40 43 46 48	36 39 42 44	33 37 40 43	29 33 36 39	25 29 32 34	17 21 24 27	20 23 25		
200	2 4 6 8 10	61 122 183 244 305	129 258 387 516 645	219 439 658 878 1097	30 38 43 47 49	32 40 45 48 51	25 33 38 41 43	20 28 32 36 38	23 27 30 32	- 19 22 24	 21 24		 20	43 49 52 55 57	38 44 47 50 52	32 38 43 46 48	24 31 35 38 41	20 26 30 34 36	19 23 26 29	24 28 30 33	 22 25	 22 25 27
250	2 4 6 8 10	96 192 288 383 479	203 406 609 812 1015	345 690 1035 1380 1725	35 42 46 50 52	35 43 48 51 54	27 35 40 43 46	21 29 34 37 40	17 24 29 31 34	- 19 22 25	21 24 27	 21	 21 24	46 52 55 58 60	41 47 50 53 55	35 41 45 49 51	26 33 37 40 43	22 28 32 36 38	- 21 25 28 31	21 27 31 33 36	 23 26 29	21 25 28 30
315	2 4 6 8 10	153 306 459 612 764	324 648 971 1295 1619	550 1101 1651 2202 2752	40 46 50 52 55	39 47 51 55 57	30 38 43 46 48	23 31 36 39 42	19 26 30 33 35	- 20 23 25	24 27 30	 22 25	 21 24 27	49 55 58 61 63	44 50 53 56 58	38 44 48 52 54	28 35 39 42 45	24 30 34 38 40	23 27 30 33	24 30 33 36 39	22 26 30 32	24 28 31 33
355	2 4 6 8 10	779	412 824 1236 1649 2061	701 1401 2102 2803 3503	42 48 52 54 56	41 49 53 57 59	31 39 44 47 50	24 32 37 40 43	19 26 31 33 36	- 20 23 25	22 26 29 31	20 24 27	 23 27 29	51 56 60 62 65	46 51 55 57 60	39 46 50 53 56	29 36 40 43 46	25 32 36 39 41	18 24 28 31 34	26 31 35 38 40	24 28 31 34	20 26 30 33 35
400	2 4 6 8	248 495 743 990	524 1049 1573 2097	891 1783 2674 3565 4456	45 50 53 55 57	43 51 55 59 61	33 41 46 49 52	25 33 38 41 44	20 27 31 34 36	- 20 23 26	24 28 31 33	 22 26	20 25 29	52 58 61 64 66	47 53 56 59 61	41 47 51 55 57	30 37 41 44 47	26 33 37 40 42	19 25 29 32 35	27 33 37 39 42	26 30 33 36	22 28 31 34 37

- 1. Sound data is determined in a reverberation
- room at an independent sound laboratory, according to ISO3741 and ISO 5135 standards.

 2. Lw in dB/Oct. (re 1pW) are sound power levels for discharge sound and case radiated sound. Figures less than 17 dB are indicated by "-
- 3. The discharge sound pressure levels are determined with the assumptions as mentioned in table 1 for downstream ductwork including a diffuser with insulated plenum box.
- 4. The radiated sound pressure levels are determined with the assumptions as mentioned in table 1 for ceiling plenum and suspended ceiling absorption. 5. Lp values are including a room absorption of 10 dB/Oct.
- 6. DB(A), NC and NR index figures are sound pressure levels. Figures less than 20 are indicated
- λys is static pressure drop across VAV air volume control terminal with damper fully open.
 For non standard applications and/or selections,
- please contact our technical staff.
- 9. For non standard applications and/or selections, please contact our technical staff.

Table 1: Assumptions for additional attenuation

Hz	125	250	500	1K	2K	4K
Discharge (dB)	5	10	20	30	30	25
Radiated (dB)	2	5	10	15	15	20

Model	125	250	500	1K	2K	4K	Hz
100	13	18	24	32	35	34	dB
125	11	17	22	31	34	32	dB
160	10	14	19	25	28	27	dB
200	10	13	17	23	26	25	dB
250	9	13	16	22	25	24	dB
315	9	12	16	21	24	24	dB
355	9	12	16	21	24	24	dB
400	8	11	13	19	22	23	dB

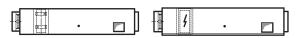
Type NVOG. NVON.

Sound data $\Delta p = 150 Pa$

Sound	iala Z	7b –	150 P	а									A 4									
		datar	efering	to									Δp = 1	50 P	a							
			t spigo			in d		disch				1			in -	D/C	<u>radi</u> ct. (r		ound		1	
					L _w	in d	B/ U	et. (re	э тр	/V)	L	p valu	les	L,	, in c	B/U	Ct. (r	епри	/V)	L	p valu	es
Model	velocity	ē	air volui		125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	dB (A)	NC	N.	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	dB(A)	NC	N R
	m/s	l/s	CFM	m³/h			dE	3								d	IB					
	2	15	31	53	-	25	21	-	-	-				25	26	-	-	-	-			
100	4	29	62	106	25	33	29	24	23	-				30	31	22	20	-	-			
100	6	44	94	160	31	37	34	29	27	18				34	35	26	24	20	-			
	8	59	125	213	35	41	37	32	30	21				37	38	30	28	24	-			
	10	74	156	266	38	43	40	35	32	23				39	40	33	31	27	19			
	2	23	49	84	21	29	24	20	19	-				27	28	18	-	-	-			
4	4	47	99	168	31	37	32	28	26	17				33	34	25	22	18	-			
125	6	70	149	253	37	41	37	33	30	21				37	38	29	26	22	-			
	8	94	198	337	41	45	40	36	33	24				40	41	33	30	26	18			
	10	117	248	421	44	47	43	39	35	26				42	43	36	33	29	21	21		
	2	39	82	139	29	33	28	24	22	-				31	27	21	-	-	-			
	4	78	164	279	38	41	36	32	29	21				36	32	28	24	20	-			
160	6	116	246	418	43	46	41	37	33	25				40	36	32	29	24	17			
	8	155	328	558	47	49	44	40	36	28	22		22	43	39	36	32	28	20			
	10	194	410	697	50	52	47	43	39	30	25		25	45	41	39	35	31	23	22		
	2	61	129	219	33	36	29	25	23	-				40	35	27	19	-	-			
200	4	122	258	439	42	44	37	33	31	21				45	40	34	26	22	-	20		
200	6	183	387	658	46	49	41	38	35	25	21		22	49	44	38	31	26	19	24		
	8	244	516	878	50	52	45	41	38	28	25		25	52	47	42	34	30	22	27		21
	10	305	645	1097	53	55	47	44	40	30	27	22	28	54	49	45	37	33	25	30	21	24
	2	96	203	345	38	39	31	27	25	-				42	37	30	21	18	-			
250	4	192	406	690	45	47	39	35	32	21				48	43	37	28	24	-	23		
230	6	288	609	1035	50	52	44	40	36	25	24		25	52	47	41	32	28	21	27		21
	8	383	812	1380	53	55	47	43	39	28	28	22	28	55	50	45	36	32	24	30	22	24
	10	479	1015	1725	55	58	50	46	41	30	30	25	31	57	52	48	39	35	27	33	25	27
	2	153	324	550	43	43	34	29	26	-				45	40	33	23	20	-	20		
315	4	306	648	1101	49	51	42	37	33	22	23	21		51	46	40	30	26	19	26		20
010	6	459	971	1651	53	55	46	42	37	26	28	26	22	55	50	44	35	30	23	30	22	24
	8	612	1295	2202	56	59	50	45	40	29	31	30	26	58	53	48	38	34	26	33	25	27
	10	764	1619	2752	58	61	52	48	42	31	33	33	29	60	55	51	41	37	29	35	29	30
	2	195	412	701	46	44	35	30	27	-				47	42	35	24	21	-	22		
355	4	389	824	1401	51	52	43	38	34	22	25	23		53	48	41	31	27	20	28		22
333	6	584	1236	2102	55	57	48	43	38	26	30	28	25	56	51	46	36	31	24	31	24	26
	8	779	1649	2803	57	60	51	46	41	29	33	32	28	59	54	49	39	35	27	34	27	29
	10	973	2061	3503	59	63	54	49	43	31	35	35	31	62	57	52	42	38	30	37	31	32
	2	248	524	891	49	46	37	31	28	-	21			48	43	36	25	22	-	23	-	
400	4	495	1049	1783	54	54	45	39	35	22	27	25	21	54	49	43	32	28	21	29	21	24
	6	743	1573	2674	57	59	49	44	39	27	32	31	27	58	53	47	37	32	25	33	26	28
	8	990	2097	3565	59	62	53	47	42	29	35	35	31	61	56	51	40	36	28	36	29	31
	10	1238	2621	4456	60	65	55	49	44	32	37	38	34	63	58	54	43	39	31	38	32	33

- 1. Sound data is determined in a reverberation
- room at an independent sound laboratory, according to ISO3741 and ISO 5135 standards.

 2. Lw in dB/Oct.(re 1pW) are sound power levels for discharge sound and case radiated sound. Figures less than 17 dB are indicated by "-
- 3. The discharge sound pressure levels are determined with the assumptions as mentioned in table 1 for downstream ductwork including a diffuser with insulated plenum box.
- 4. The radiated sound pressure levels are determined with the assumptions as mentioned in table 1 for ceiling plenum and suspended ceiling absorption. 5. Lp values are including a room absorption of 10 dB/Oct.
- 6. DB(A), NC and NR index figures are sound pressure levels. Figures less than 20 are indicated by "- -".
- 7. Δps is static pressure drop across VAV air volume control terminal with damper fully open.
- 8. For non standard applications and/or selections, please contatct our technical staff.
- 9. For non standard applications and/or selections, please contact our technical staff.


Table 1: Assumptions for additional attenuation

Hz	125	250	500	1K	2K	4K
Discharge (dB)	5	10	20	30	30	25
Radiated (dB)	2	5	10	15	15	20

Model	125	250	500	1K	2K	4K	Hz
100	7	11	16	22	23	22	dB
125	5	10	14	21	22	20	dB
160	4	7	11	15	16	15	dB
200	4	6	9	13	14	13	dB
250	3	6	8	12	13	12	dB
315	3	5	8	11	12	12	dB
355	3	4	7	10	11	12	dB
400	3	4	6	10	11	12	dB

Type NVOG. NVON.

Sound data $\Delta p = 250 Pa$

Model	velocity				L _w	in d	data refering to discharge sound radiated sound L, in dB/Oct. (re 1pW) Lp values L, in dB/Oct. (re 1pW) Lp value															
Model	elocity				L_ _{w.}	ın a										D / 0						
Model	elocity						D / O (ct. (re	e 1p\	N)	L	p valı	ies	L,	, in d	IB/O∈	ct. (r	e 1p\ ∣	N)	L	p valu	ies
	>	а	ir volur	ne	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	dB(A)	NC	N R	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	dB (A)	NC	<u>α</u>
	m/s	l/s	CFM	m³/h			dE	 3								d	В					
	2	15	31	53	18	28	25	20	20	-				28	29	20	18	-	-			
400	4	29	62	106	28	36	33	28	27	20				34	35	26	24	20	-			
100	6	44	94	160	33	41	38	33	32	24				37	38	31	29	24	-			
	8	59	125	213	38	44	41	36	35	27				40	41	34	32	27	20			
	10	74	156	266	41	46	44	39	37	29				42	43	36	35	30	23	22		
	2	23	49	84	24	32	29	24	24	-				31	32	23	20	-	-			
125	4	47	99	168	34	40	37	32	31	23				37	38	29	26	22	-			
125	6	70	149	253	39	44	41	37	35	27				40	41	33	31	26	19			
	8	94	198	337	43	48	45	40	38	30	20			43	44	37	34	29	22	22		
	10	117	248	421	46	50	47	43	40	32	23			45	46	39	37	32	25	24		21
	2	39	82	139	32	36	32	28	27	20				34	30	26	22	18	-			
160	4	78	164	279	41	44	40	36	34	27				40	36	33	29	25	17			
100	6 8	116	246	418	46	49	45	41	38 41	31 34	22			43	39 42	37	33	29	21	22		
	10	155	328	558 697	50	52	48 51	44	43	36	25 28		22 25	46	44	40	36	32 34	24	23 25		
	2	194 61	129	219	52 36	55 39	33	47 30	28	20		22	25	48	38	32	39 24	20	27	25		
	4	122	258	439	44	47	41	38	35	27				49	44	38	31	26	19	24		
200	6	183	387	658	49	52	46	42	39	31	25		22	52	47	43	35	30	23	28		22
	8	244	516	878	53	55	49	46	42	34	28	23	25	55	50	46	38	34	26	30	22	25
	10	305	645	1097	55	58	51	48	44	36	31	26	28	57	52	48	41	36	29	33	25	27
	2	96	203	345	41	42	35	31	29	20				46	41	35	26	22	-	21		
0.50	4	192	406	690	48	50	43	39	36	27	23			52	47	41	33	28	21	27		21
250	6	288	609	1035	52	55	48	44	41	31	28	22	25	55	50	45	37	32	25	31	23	25
	8	383	812	1380	56	58	51	47	43	34	31	26	28	58	53	49	40	36	28	33	26	28
	10	479	1015	1725	58	61	54	50	46	37	33	29	31	60	55	51	43	38	31	36	29	30
	2	153	324	550	46	46	38	33	31	21				49	44	38	28	24	-	24		
315	4	306	648	1101	52	54	46	41	38	28	27	21	23	55	50	44	35	30	23	30	22	24
313	6	459	971	1651	56	58	51	46	42	32	31	26	28	58	53	48	39	34	27	33	26	28
	8	612	1295	2202	58	62	54	49	45	35	34	30	32	61	56	52	42	38	30	36	30	31
	10	764	1619	2752	61	64	56	52	47	37	37	33	35	63	58	54	45	40	33	39	32	33
	2	195	412	701	48	48	39	34	31	21	21			51	46	39	29	25	18	26		20
355	4	389	824	1401	54	56	47	42	38	28	28	23	25	56	51	46	36	32	24	31	24	26
	6	584	1236	2102	58	60	52	47	43	32	33	28	31	60	55	50	40	36	28	35	28	30
	8	779	1649	2803	60	64	55	50	45	35	36	32	34	62	57	53	43	39	31	38	31	33
	10	973	2061	3503	62	66	58	53	48	37	38	35	37	65	60	56	46	41	34	40	34	35
	2	248	524	891	51	50	41	35	32	21	24			52	47	41	30	26	19	27	-	22
400	4	495	1049	1783	56	58	49	43	39	28	30	25	28	58	53	47	37	33	25	33	26	28
	6	743	1573	2674	59	62	54	48	43	32	35	31	33	61	56	51	41	37	29	37	30	31
	8	990	2097	3565	61	66	57	51	46	35	38	35	36	64	59	55	44	40	32	39	33	34
. Sound data		1238		4456	63 n	68	60 DR(4)	54 NC and	48	dev fin	40	38	39 d	66	61	57	47	42	35	42	36	37
room at an								re leve						ed				2 : In:		n Loss	_	IK F

- according to ISO3741 and ISO 5135 standards.
- 2. Lw in dB/Oct. (re 1pW) are sound power levels for discharge sound and case radiated sound. Figures less than 17 dB are indicated by "-
- 3. The discharge sound pressure levels are determined with the assumptions as mentioned in table 1 for downstream ductwork including a diffuser with insulated plenum box.
- 4. The radiated sound pressure levels are determined with the assumptions as mentioned in table 1 for ceiling plenum and suspended ceiling absorption.

 5. Lp values are including a room absorption of 10 dB/Oct.
- by "- -"
- 7. Δps is static pressure drop across VAV air volume control terminal with damper fully open.
- 8. For non standard applications and/or selections, please contatct our technical staff.
- 9. For non standard applications and/or selections, please contact our technical staff.

Table 1 · Assumptions for additional attenuation

Table L. Assulliption	113 101	auu	ILIUITE	ii alle	iiuai	1011
Hz	125	250	500	1K	2K	4K
Discharge (dB)	5	10	20	30	30	25
Radiated (dB)	2	5	10	15	15	20

					_		
Model	125	250	500	1K	2K	4K	Hz
100	7	11	16	22	23	22	dB
125	5	10	14	21	22	20	dB
160	4	7	11	15	16	15	dB
200	4	6	9	13	14	13	dB
250	3	6	8	12	13	12	dB
315	3	5	8	11	12	12	dB
355	3	4	7	10	11	12	dB
400	3	4	6	10	11	12	dB

Sound data $\Delta p = 150 Pa$

Type NVOJ. NVOQ.

		•										1	∆p = 1	150 P	а							
			efering					disc	harge	soun	d						radi	iated	sound	ł		
		inie	tspigo	t	L _w	in d	B/O	ct. (r	e 1p\	N)	L	p val	ues	L,	, in d	IB/O	ct. (r	e 1p\	W)	L	p valu	ıes
Model	velocity	á	air volu	me	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	dB (A)	NC	N.	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	dB(A)	NC	N R
	m/s	l/s	CFM	m³/h			dE	3								d	В					
	2	15	31	53	-	18	-	-	-	-				25	26	-	-	-	-			
100	4	29	62	106	19	26	21	-	-	-				30	31	22	20	-	-			
100	6	44	94	160	25	30	26	19	-	-				34	35	26	24	20	-			
	8	59	125	213	29	34	29	22	18	-				37	38	30	28	24	-			
	10	74	156	266	32	36	32	25	20	-				39	40	33	31	27	19			
	2	23	49	84	-	22	-	-	-	-				27	28	18	-	-	-			
40.	4	47	99	168	25	30	24	18	-	-				33	34	25	18	18	-			
125	6	70	149	253	31	34	29	23	18	-				37	38	29	22	22	-			
	8	94	198	337	35	38	32	26	21	-				40	41	33	26	26	18			
	10	117	248	421	38	40	35	29	23	-				42	43	36	29	29	21	21		21
	2	39	82	139	23	26	20	-	-	-				31	27	21	-	-	-			
	4	78	164	279	32	34	28	22	17	-				36	32	28	24	20	-			
160	6	116	246	418	37	39	33	27	21	-				40	36	32	29	24	17			
	8	155	328	558	41	42	36	30	24	-				43	39	36	32	28	20			
	10	194	410	697	44	45	39	33	27	18				45	41	39	35	31	23	22		
	2	61	129	219	27	29	21	-	-	-				40	35	27	19	-	-			
200	4	122	258	439	36	37	29	23	19	-				45	40	34	26	22	-	20		
	6	183	387	658	40	42	33	28	23	-				49	44	38	31	26	19	24		
	8	244	516	878	44	45	37	31	26	-				52	47	42	34	30	22	27		21
	10	305	645	1097	47	48	39	34	28	18	21		20	54	49	45	37	33	25	30	21	24
	2	96	203	345	32	32	23	17	-	-				42	37	30	21	18	-			
250	4	192	406	690	39	40	31	25	20	-				48	43	37	28	24	-	23		
	6	288	609	1035	44	45	36	30	24	-				52	47	41	32	28	21	27		21
	8	383	812	1380	47	48	39	33	27	-	21			55	50	45	36	32	24	30	22	24
	10	479	1015	1725	49	51	42	36	29	19	23		20	57	52	48	39	35	27	33	25	27
	2	153	324	550	37	36	26	19	-	-				45	40	33	23	20	-	20		
315	4	306	648	1101	43	44	34	27	21	-				51	46	40	30	26	19	26		20
	6	459	971	1651	47	48	38	32	25	-	21			55	50	44	35	30	23	30	22	24
	8	612	1295	2202	50	52	42	35	28	-	24		21	58	53	48	38	34	26	33	25	27
	10	764	1619	2752	52	54	44	38	30	19	27	21	24	60	55	51	41	37	29	35	29	30

1238 2621 1. Sound data is determined in a reverberation room at an independent sound laboratory, according to ISO3741 and ISO 5135 standards.

- 2. Lw in dB/Oct.(re 1pW) are sound power levels for discharge sound and case radiated sound. Figures less than 17 dB are indicated by "-
- 3. The discharge sound pressure levels are determined with the assumptions as mentioned in table 1 for downstream ductwork including a diffuser with insulated plenum box
- 4. The radiated sound pressure levels are determined with the assumptions as mentioned in table 1 for ceiling plenum and suspended ceiling absorption. 5. Lp values are including a room absorption of 10 dB/Oct.
- 6. DB(A), NC and NR index figures are sound pressure levels. Figures less than 20 are indicated
- 7. Δps is static pressure drop across VAV air volume control terminal with damper fully open.
- 8. For non standard applications and/or selections, please contatct our technical staff.
- 9.For non standard applications and/or selections, please contact our technical staff.

Table 1: Assumptions for additional attenuation

abio itooamptioi	10 101	uuu	110110	, atte	maa	1011
Hz	125	250	500	1K	2K	4K
Discharge (dB)	5	10	20	30	30	25
Radiated (dB)	2	5	10	15	15	20

Table 2 : Insertion Loss

- -

- -

					~		
Model	125	250	500	1K	2K	4K	Hz
100	14	20	26	35	38	37	dB
125	12	18	24	34	37	35	dB
160	11	16	21	28	31	30	dB
200	11	15	19	26	29	28	dB
250	10	14	18	25	28	27	dB
315	10	13	18	25	27	27	dB
355	10	13	18	25	27	27	dB
400	9	12	16	23	25	26	dB

- -

Type NVOJ. NVOQ.

Sound data $\Delta p = 250 Pa$

		•	2001	-									∆p = 2	250 P	а							
			efering t spigo						narge		d							iated		ı		
		11116	tspigo		L _w	in d	B/O	ct. (r	e 1p\	N)	L	p val	ues	L _w	in di	3/Oc	t. (re	1pW	/)	L	p valu	ıes
Model	velocity	ć	air volu	me	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	dB(A)	NC	N R	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	dB (A)	NC	N R
	m/s	I/s	CFM	m³/h			dE	3									В					
100	2 4 6 8 10	15 29 44 59 74	31 62 94 125 156	53 106 160 213 266	- 22 27 32 35	21 29 34 37 39	17 25 30 33 36	- 18 23 26 29	- 20 23 25					28 34 37 40 42	29 35 38 41 43	20 26 31 34 36	18 24 29 32 35	20 24 27 30	- - 20 23	 22		
	2	23	49	84	18	25	21	29	-					31	32	23	20	-	23			
125	4 6 8 10	47 70 94 117	99 149 198 248	168 253 337 421	28 33 37 40	33 37 41 43	29 33 37 39	22 27 30 33	19 23 26 28	- - 18 20				37 40 43 45	38 41 44 46	29 33 37 39	26 31 34 37	22 26 29 32	19 22 25	 22 24		 21
160	2 4 6 8 10	39 78 116 155 194	82 164 246 328 410	139 279 418 558 697	26 35 40 44 46	29 37 42 45 48	24 32 37 40 43	18 26 31 34 37	- 22 26 29 31	- 19 22 24	 21			34 40 43 46 48	30 36 39 42 44	26 33 37 40 43	22 29 33 36 39	18 25 29 32 34	- 17 21 24 27	 20 23 25		
200	2 4 6 8 10	61 122 183 244 305	129 258 387 516 645	219 439 658 878 1097	30 38 43 47 49	32 40 45 48 51	25 33 38 41 43	20 28 32 36 38	23 27 30 32	- 19 22 24	 21 24		 20	43 49 52 55 57	38 44 47 50 52	32 38 43 46 48	24 31 35 38 41	20 26 30 34 36	19 23 26 29	24 28 30 33	 22 25	22 25 27
250	2 4 6 8 10	96 192 288 383 479	203 406 609 812 1015	345 690 1035 1380 1725	35 42 46 50 52	35 43 48 51 54	27 35 40 43 46	21 29 34 37 40	17 24 29 31 34	- 19 22 25	21 24 27	 21	 21 24	46 52 55 58 60	41 47 50 53 55	35 41 45 49 51	26 33 37 40 43	22 28 32 36 38	21 25 28 31	21 27 31 33 36	23 26 29	21 25 28 30
315	2 4 6 8 10	153 306 459 612 764	324 648 971 1295 1619	550 1101 1651 2202 2752	40 46 50 52 55	39 47 51 55 57	30 38 43 46 48	23 31 36 39 42	19 26 30 33 35	- 20 23 25	 24 27 30	 22 25	 21 24 27	49 55 58 61 63	44 50 53 56 58	38 44 48 52 54	28 35 39 42 45	24 30 34 38 40	- 23 27 30 33	24 30 33 36 39	22 26 30 32	24 28 31 33
355	2 4 6 8 10	195 389 584 779 973	412 824 1236 1649 2061	701 1401 2102 2803 3503	42 48 52 54 56	41 49 53 57 59	31 39 44 47 50	24 32 37 40 43	19 26 31 33 36	- 20 23 25	22 26 29 31	 20 24 27	 23 27 29	51 56 60 62 65	46 51 55 57 60	39 46 50 53 56	29 36 40 43 46	25 32 36 39 41	18 24 28 31 34	26 31 35 38 40	24 28 31 34	20 26 30 33 35
400	2 4 6 8 10	248 495 743	524 1049 1573 2097	891 1783 2674 3565 4456	45 50 53 55 57	43 51 55 59 61	33 41 46 49 52	25 33 38 41 44	20 27 31 34 36	- 20 23 26	24 28 31 33	 22 26	20 25 29 31	52 58 61 64 66	47 53 56 59 61	41 47 51 55 57	30 37 41 44 47	26 33 37 40 42	19 25 29 32 35	27 33 37 39 42	26 30 33 36	22 28 31 34 47

- 1. Sound data is determined in a reverberation
- room at an independent sound laboratory, according to ISO3741 and ISO 5135 standards.

 2. Lw in dB/Oct.(re 1pW) are sound power levels for discharge sound and case radiated sound. Figures less than 17 dB are indicated by "-
- 3. The discharge sound pressure levels are determined with the assumptions as mentioned in table 1 for downstream ductwork including a diffuser with insulated plenum box.
- 4. The radiated sound pressure levels are determined with the assumptions as mentioned in table 1 for ceiling plenum and suspended ceiling absorption. 5. Lp values are including a room absorption of 10 dB/Oct.
- 6. DB(A), NC and NR index figures are sound pressure levels. Figures less than 20 are indicated by "- -"
- 7. Δps is static pressure drop across VAV air volume control terminal with damper fully open.
- 8. For non standard applications and/or selections, please contatct our technical staff.
- 9. For non standard applications and/or selections, please contact our technical staff.

Table 1: Assumptions for additional attenuation

Hz	125	250	500	1K	2K	4K
Discharge (dB)	5	10	20	30	30	25
Radiated (dB)	2	5	10	15	15	20

Model	125	250	500	1K	2K	4K	Hz
100	14	20	26	35	38	37	dB
125	12	18	24	34	37	35	dB
160	11	16	21	28	31	30	dB
200	11	15	19	26	29	28	dB
250	10	14	18	25	28	27	dB
315	10	13	18	25	27	27	dB
355	10	13	18	25	27	27	dB
400	9	12	16	23	25	26	dB

Website: www.barcolair.net